
Groups with property (T)
Hutchcroft-Pete theorem

Unimodular Rooted Graphs with property (T)
Kazhdan’s theorem for point processes

Connes-Weiss and Glasner-Weiss theorems for
Kazhdan equivalence relations, and applications

to cost

 Lukasz Grabowski
Leipzig University

j/w with Hector Jardon Sanchez and Sam Mellick

August 22, 2023

 Lukasz Grabowski Kazhdan property (T) for URGs



Groups with property (T)
Hutchcroft-Pete theorem

Unimodular Rooted Graphs with property (T)
Kazhdan’s theorem for point processes

Outline

1 Groups with property (T)

2 Hutchcroft-Pete theorem

3 Unimodular Rooted Graphs with property (T)

4 Kazhdan’s theorem for point processes

 Lukasz Grabowski Kazhdan property (T) for URGs



Groups with property (T)
Hutchcroft-Pete theorem

Unimodular Rooted Graphs with property (T)
Kazhdan’s theorem for point processes

Table of Contents

1 Groups with property (T)

2 Hutchcroft-Pete theorem

3 Unimodular Rooted Graphs with property (T)

4 Kazhdan’s theorem for point processes

 Lukasz Grabowski Kazhdan property (T) for URGs



Groups with property (T)
Hutchcroft-Pete theorem

Unimodular Rooted Graphs with property (T)
Kazhdan’s theorem for point processes

Definitions

Let G be a countable discrete group.
• Let π : G ↷ H be a unitary representation. We say that π has
almost invariant vectors if

for every finite set F ⊂ G and ∀ε > 0 there exists v ∈ H with
∥v∥ = 1 such that for γ ∈ F we have ∥γ.v − v∥ < ε.

• We say that π has an invariant vector if for some v ∈ H with
∥v∥ = 1 and all γ ∈ G we have γ.v = v
• We say that G has Kazhdan’s property (T) if for every unitary
representation π we have that if π has almost invariant vectors
then it has an invariant vector.
• Examples...
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Connes-Weiss theorem

Let π : G ↷ (X , µ) be a probablity measure preserving action.
• We say that π is ergodic if the following holds. If U ⊂ X is
G -invariant then µ(U) = 0 or µ(U) = 1.
• We say that π is expanding if

there exists a finite set S ⊂ G , ∃δ > 0 such that for all U ⊂ X
with 0 < µ(U) < 3

4 we have µ(S .U) > (1 + δ)µ(U).

Theorem (Connes-Weiss)

G has property (T) if every free ergodic action of G is expanding.
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Connes-Weiss formulated via extensions

Let π : G ↷ (X , µ) be a probability measure preserving action.

• We say that π has almost invariant sets if it is not expanding,
i.e. for every finite S ⊂ G and ∀δ > 0 there exists U ⊂ X with
0 < µ(U) < 3

4 such that µ(S .U) < (1 + δ)µ(U)
• An extension of π is a pmp action σ : G ↷ (Y , ν) together with
a G -equivariant map E : Y → X such that µ = E ∗(ν)
• Example: Bernoulli extension.

Theorem (Connes-Weiss via extensions)

The group G does not have property (T) if for every free ergodic
action π there exists a free ergodic extension σ such that σ has
almost invariant sets.
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Kazhdan constants

• Fact: Property (T) groups are finitely generated. Thus let G be a
f.g. group and let us fix a finite symmetric generating set S for G .
• Given a finite partition A of X , i.e.X =

⊔
A∈A A, we define

∂S(A) := {(x , s) ∈ X × S : x and s.x are in different parts}

• For n ∈ N we say that A is an n-partition if there are n parts,
each of which has measure between 1

n − 1
n3 and 1

n + 1
n3 .

• Let n ∈ N we define the Kazhdan constant Kπ(n) of π as

Kπ(n) := inf
A

µ(∂SA),

where the infimum is over all n-partitions A. We also define

K (n) := inf
π
Kπ(n)

where the infimum is over all free ergodic actions π.
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n3 and 1

n + 1
n3 .

• Let n ∈ N we define the Kazhdan constant Kπ(n) of π as

Kπ(n) := inf
A

µ(∂SA),

where the infimum is over all n-partitions A. We also define

K (n) := inf
π
Kπ(n)

where the infimum is over all free ergodic actions π.
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Kazhdan-optimal partitions

Theorem (Consequence of Glasner-Weiss)

• G has property (T) iff for all n the Kazhdan constant K (n) is
non-zero. Furthermore, if G has property (T) then “infimum is
relaised by some partition” i.e. for every n there exists an ergodic
action π and an n-partition A such that K (n) = Kπ(n) = µ(∂A).

If an n-partition A is such that K (n) = µ(∂A) then we say that A
is Kazhdan-optimal.
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Almost unique clusters

• Let π : G ↷ (X , µ) be a probability measure preserving action of
a finitely generated group. Let us fix a symmetric generating set S
for G . For x ∈ X let G(x) be the graph which is the connected
component of the Schreier graph of π which contains x
• Let U ⊂ X . We say that U has almost unique clusters if for
almost all x ∈ X the restriction of the graph G(x) to U ∩ G .x has
finitely many infinite components.
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Existence of small almost unique clsuters

Theorem (Hutchcroft - Pete, “existence of small almost unique
clusters”)

Let G be a group with property (T), let π : G ↷ (X , µ) and let
ε > 0. There exists an ergodic extension σ : G ↷ (Y , ν) and
U ⊂ Y such that µ(U) < ε and U has almost unique clusters.

• This implies that the cost of a group with property (T) is 1.
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Kazhdan optimal parititons and almost unique clusters

Clearly it’s enough to show the following.

Theorem (G-Jardon Sanchez-Mellick)

Let G be group with property (T). Suppose that π : G ↷ X is a
probability measure preserving action and suppose that for some n
we have a Kazhdan optimal n-partition A of X .Then one of the
parts of A has almost unique clusters.
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Kazhdan optimal parititons and almost unique clusters

Sketch of Proof.

• Suppose BWOC that none of the parts have almost unique
clusters. It is easy to see that we can find parts A and B such that
µ(A) ⩾ 1

n , µ(B) ⩽ 1
n and µ(S .A ∩ B) ̸= 0, i.e. there are some

edges between the A-clusters and B-clusters.
• Consider the extension (Y , ν) which arises as Bernoulli on
clusters of A, i.e. each cluster of A gets a number 0 or 1. Assume
that probability of getting 0 is 1

n3 .
• We define a partition of Y by first pulling back the partition A,
and then merging the A-clusters which got 0 with the B-clusters.
The assumption that A doesn’t have almost unique clusters
implies that (after passing to an ergodic decomposition) we can
just as well assume that Y is ergodic. This contradicts the
Kazhdan-optimality of A.
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• Unimodular Random Graph (URG) is a probability measure G on
the Borel space of isoclasses of countable rooted graphs, which
respects the mass transport principle.
• A graphing is a Borel graph whose vertex space is a standard
probability measure space, and edges are given by graphs of
measure-preserving functions.
• Given a graphing we obtain a URG by sampling the root from
the space of vertices and taking the connected component of the
root. Every URG can be otained this way. If a URG G is obtained
from a graphing (X ,E , µ) in this way then we say that (X ,E , µ) is
a realisation of G.
• The notions such as “ergodic”, “expanding” and “almost
invariant sets” apply to graphings just as well as they do to group
actions.
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• Given a graphing we obtain a URG by sampling the root from
the space of vertices and taking the connected component of the
root. Every URG can be otained this way. If a URG G is obtained
from a graphing (X ,E , µ) in this way then we say that (X ,E , µ) is
a realisation of G.
• The notions such as “ergodic”, “expanding” and “almost
invariant sets” apply to graphings just as well as they do to group
actions.
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We say that a URG G has property (T), if every realisation of G is
expanding.
Property (T) for pmp equivalence relations has been studied
before, notably in the PhD thesis of M. Pichot.

Theorem (Connes-Weiss theorem for URGs, G-Jardon
Sanchez-Mellick)

Let G be a URG. The following conditions are equivalent.

1 G has property (T)

2 there exists a grahing which realises G such that its
equivalence relation has property (T)

3 Every graphing which realises G is such that its equivalence
relation has property (T)

The key in the proof is to construct a Gaussian extension of a
given graphing. Other approaches to Connes-Weiss might be
possible, ask François Le Mâıtre about full groups.
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 Lukasz Grabowski Kazhdan property (T) for URGs



Groups with property (T)
Hutchcroft-Pete theorem

Unimodular Rooted Graphs with property (T)
Kazhdan’s theorem for point processes

We say that a URG G has property (T), if every realisation of G is
expanding.
Property (T) for pmp equivalence relations has been studied
before, notably in the PhD thesis of M. Pichot.

Theorem (Connes-Weiss theorem for URGs, G-Jardon
Sanchez-Mellick)

Let G be a URG.

The following conditions are equivalent.

1 G has property (T)

2 there exists a grahing which realises G such that its
equivalence relation has property (T)

3 Every graphing which realises G is such that its equivalence
relation has property (T)

The key in the proof is to construct a Gaussian extension of a
given graphing. Other approaches to Connes-Weiss might be
possible, ask François Le Mâıtre about full groups.
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Glasner-Weiss for URG’s with property (T)

We can define Kazhdan constants of a URG by taking the infimum
over all ergodic realisations, just like in the case of groups.

Theorem (“Glasner-Weiss”, G-Jardon Sanchez-Mellick)

• A URG G has property (T) iff for all n the Kazhdan constant
K (n) is non-zero. Furthermore, if G has property (T) then
“infimum is realised by some partition” i.e. for every n there exists
a graphing (X ,E , µ) and an n-partition A of X such that
K (n) = Kπ(n) = µ(∂A).

As before, if an n-partition A is such that K (n) = µ(∂A) then we
say that A is Kazhdan-optimal.
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With Glasner-Weiss at our disposl we can prove the following
theorem.

Theorem (G-Jardon Sanchez-Mellick)

Let G be a URG with property (T). Suppose that (X ,E , µ) is its
realisation and and suppose that for some n we have a Kazhdan
optimal n-partition A of X .Then one of the parts of A has almost
unique clusters.
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Let us recall one more theorem about groups with Kazhdan’s
property (T).

Theorem (Kazhdan)

Let G be a locally-compact group and let Γ < G be a lattice.
Then G has property (T) iff Γ has property (T).
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Some locally-compact groups have (T) but don’t have lattices
(examples courtesy of Pierre-Emmanuel Caprace). What a waste!
Or is it?

Theorem (G - Jardon Sanchez - Mellick)

Let G be a locally-compact group, and let E be the equivalence
relation associated to a Poisson point process on G . Then G has
property (T) iff E has property (T).

This leads also to examples of URG’s with prperty (T) which don’t
arise from group actions in any obvious way.
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Thank you

Thank you for your attention!
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